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ABSTRACT

There is a wide-spread belief that most explicit one-dimensional advection schemes need to

satisfy the so-called "CFL condition" -- that the Courant number, c = uAt/Ax, must be less

than or equal to one, for stability in the von Neumann sense. This puts severe limitations

on the time-step in high-speed, fine-grid calculations and is an impetus for the development

of implicit schemes, which often require less restrictive time-step conditions for stability,

but are more expensive per time-step. However, it turns out that, at least in one dimension,

if explicit schemes are formulated in a consistent flux-based conservative finite-volume form,

von Neumann stability analysis does not place any restriction on the allowable Courant

number. Any explicit scheme that is stable for c < 1, with a complex amplitude ratio, G(c),

can be easily extended to arbitrarily large c. The complex amplitude ratio is then given by

exp(-tN0) G(Ac), where N is the integer part of c, and Ac = c -N (< 1); this is clearly

stable. The CFL condition is, in fact, not a stability condition at all, but, rather, a "range

restriction" on the "pieces" in a piece-wise polynomial interpolation. When a global view

is taken of the interpolation, the need for a CFL condition evaporates. A number of well-

known explicit advection schemes are considered and thus extended to large At. The

analysis also includes a simple interpretation of (large-At) TVD constraints.

INTRODUCTION

Consider the model one-dimensional pure advection equation for a scalar _b(x,t)

0____¢= _ u a_.____ (1)
at #x

where u is a constant advecting velocity. Take a uniform space-time grid (Ax, At) and

integrate Equation (1) over Ax and At, giving afinite-volume formulation

i

where the bars indicate spatial averages over cell i at time-levels n and (n+ 1), and left and
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right time-averaged face-values have been introduced. The Courant number is given by

c = u&t/&x (3)

The notation is defined in Figure 1, which also shows advective characteristics (along any

one of which _b is constant) entering the left face (for u > 0). Given the set of current
m

spatial-average values, _, one needs to estimate the corresponding time-averaged face-
values in order to explicitly update according to Equation (2).

In avon Neumann stability analysis, ¢(x,O is written as a wave [Fletcher, 1990]

¢(x,0 = a(t) exp(, )

where k is the wave number and t represents the imaginary unit,

substituted into Equation (1), the exact solution is [Leonard, 1980]

¢,(x,0 = A(0) exp[, k(x-uO]

corresponding to a travelling wave, with _ = const along characteristics (x = ut).

exact complex amplitude ratio is then

Go_¢ t _ d_(x,t+At) = exp(-Lc0)
¢(x,0

where 0 is the nondimensional wave-number

Note that if c > 1, Gc_ct can be written

0 = k&x

¢_utct

where N is the integer part of c

(5)

The

(6)

(7)

= exp(-t NO) exp(-, &cO) (8)

N = INT(c) (9)

(12)

and

_"" = A(O) exp{,k[x,-u(n+l)At]} (sinO-/21i 0/2 /

-_ = A(O) exp{,k[x,-unAt]} (sin 0/2 / (11)

and AC the non-integer part (necessarily less than one)

AC = c-N (10)

By integrating Equation (4) from (xi - Ax/2) to (xi + Ax/2), it is not difficult to show

that the exact cell-average values are
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Hence, the exact complex amplitude ratio of cell-average values is the same as that given by

Equation (8)

n+l

Gcx_e, - -i - Gera= t = exp(-t NO) exp(-t acO) (13)

thus, giving a reference value against which to compare numerical G's.

In the following sections, the von Neumann stability of some well-known explicit

advection schemes is studied- first in terms of the "conventional" time-step ranges, and

then for larger Courant number values. The latter extension stems naturally from identifying

the sub-grid interpolation used in estimating the time-averaged face-values in Equation (2).

It will be shown, in particular, that if G,s_ (c) is the (conventional, small time-step) complex

amplitude ratio for a given scheme for c < 1, then the natural finite-volume extension to

arbitrarily large time-step has a complex amplitude ratio of the form

n÷l
LT$ _i

- = G._(Ac) for c >1 (14)G°um (c) exp (-L NO ) srs

which should be compared with Equation (13). To the extent that GS_(Ac) is a good

approximation to exp(-t AC 0), then the large-At G.L_ (C) is an even better approximation

to the exact G. Viewed differently, a numerical simulation (over a given distance) will be

more accurate for larger At because, as will become evident, numerical distortion depends

only on the total number of time steps and arc-- not on c itself.

EXPLICIT ADVECTION SCHEMES

The time-averaged face-values appearing in Equation (2) can be rewritten in terms of spatial

averages. For example, the time averaged left-face value is given by

¢bt = A'_l joX' _bt(r) dr = c_1 Jx:',-ca,_b"(_)d_ (15)

where be(z) is the instantaneous face-value and _"(_) is the local sub-grid spatial behaviour

in the region upstream of the face in question, at time-level n. The relationship should be

clear from Figure 1; note that uAt = CZ_C. A similar formula holds for the right face. But

it is not necessary to write this out explicitly because advective flux conservation guarantees

that

_br(i) = _t(i+l) (16)

Different numerical schemes result from different choices of _b'(_) in estimating the local

behaviour. Note in particular that for consistency, _b"(_) should obey the integral constraint

___1 [*.._,24_,(0d_ = _7 for all i (17)



First-Order Upwinding

One of the simplest advection schemes results from assuming that ¢n(_) is piece-wise

constant, for each i,

_n(_) = _: for (x,---_-) <_< (x,+-_-) (18)

with discontinuities at the cell faces, as shown in Figure 2, the hatched region depicting the

integral in Equation (15). This, of course, trivially satisfies Equation (17), and the left-face

value given by Equation (15) for a positive Courant number less than (or equal to) one is

simply

¢_,(i) = _-t for 0 <c <1 (19)

and, similarly

_r(i) -- _7 for 0 < c <1 (20)

The update equation, Equation (2), thus becomes

_,,.1 = _7 - c(_7-__1) for 0 <c <1 (21)i

The corresponding complex amplitude ratio is

GIu(C ) = 1 - c[1 - exp(-_0)] (22)

or

GIu(c ) = 1 - c(1-cos0) - Lcsin0 (23)

For the full range of numerical wave-numbers (0 < 0 < a-), this represents a semicircle of

radius c in the lower half of the complex plane, passing through the point (1,0). The scheme

is thus stable (I GI - 1)provided the CFL condition (c <_ 1) is satisfied. Figure 3 shows

a polar plot of G_u for c = 0.75.

Making a Taylor expansion of real and imaginary parts gives

c 02 + 0(04 ) _ _ [cO + 0(03)] (24)
Glv(c ) = 1 -._

whereas a Taylor expansion of the exact G gives

G o_,ct(c) = cos(c0) - _ sin(c0)

c202 +0(04 )-_[cO- c303
= 1- T -g-

÷ o(o')]
(25)

Thus Gtu indeed matches Gcx_c t only through first-order terms in 0, with discrepancies in the

second-order term (unless c - 1, in which case exact cell-to-cell transfer occurs across one

mesh-width: _.1 = __1).
--i



Second-Order Methods

It is convenient to define the "order" of an advection scheme as the power of 0 up to and

including which the Taylor expansion of G,m matches that of G_ct given by Equation (25).

One of the best known second-order methods is that due to Lax and Wendroff [1960],

equivalent in the scalar case to Leith's method [1965]. For this scheme, the sub-grid ffn(_)

is assumed to be piece-wise linear satisfying Equation (17). Upstream of the left face, for

example, a straight line is drawn (for u > 0) between _7-i and cbn , considered to be located

at the centers of the respective finite-volume cells. A similar construction xs made across

each of the other cells, resulting in discontinuities at cell faces. This is shown in Figure 4,

which also indicates the integral in Equation (15) for 0 < c < 1.

In this case, i.e., for a Courant number less than (or equal to) one,

-- ,or -
upstream of the left face, across cell (i-1). Substitution into Equation (15) results in

1 (_7 + TM c . (27)- - _,-1)- (_7- 4,_1)
6t(i)- 2

According to Equation (16), _r is obtained by increasing each index by 1.

update equation as

7..1 77- c (7,.,- 7;o * c2

This gives the

(28)

Because of the symmetry about cell i, this formula is actually valid for positive or negative

Courant number, provided

Icl -< 1 (29)

The negative-c case is shown in Figure 5, where the sub-grid _"(_) for computing 4t is the

same formula as that in Equation (26)- but across cell i rather than (i-1).

The numerical complex amplitude ratio for the Lax-Wendroff scheme can be obtained

directly from Equation (28) as

C 2
c [exp(L0) - exp(-L 0)1 + [exp(_ 0) - 2 + exp(-L 0)1

GLw(C ) = 1 - -_ -_-
(30)

or

GLw(C ) = 1 - C2(1- COS0) - tC sin 0
(31)

with a corresponding Taylor expansion

c2 02 + 0(04) - ,[cO - c 03 + O(05)] (32)G_w(c) = 1-T
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thus matching the expansion of Ge..ot, Equation (25), through 02 terms, as expected for a

second-order scheme. Once again, exact point-to-point transfer across one mesh-width

occurs when c _ 1 (and also, in this case, when c - -1). Figure 6 shows a polar plot of

GLw, a semi-ellipse with vertical semi-axis equal to c and curvature near (1,0) equal to that

of the unit circle. The scheme is stable provided the CFL condition is satisfied--and

unstable otherwise.

The Lax-Wendroff scheme is symmetrical in the sense that a given face-value

(assuming lcl <--1) depends only on the two immediately adjacent cell-average values on

either side of the face in question. Figure 7 shows an alternate piece-wise linear sub-grid

reconstruction (for positive c) using the two immediate upstream cell-average values.

Although the reconstruction of _'(_) looks superficially the same as that in Figure 5, this

represents an entirely different advection scheme in that the integral of Equation (15) is

computed from the left (rather than the right, as in Figure 5). This will be found to generate

a second-order advection scheme. Because of the upwind bias, it is now commonly known

as "second-order upwinding" [Fletcher, 1990]. Upstream of the left face, across cell (i -1),

_bn(_) is given by

_n(_) = _;1 + _- ;2 (__x,_l) for i-,--_- < _ < i-1 + 2) (33)

Equation (15) then gives the left-face value as

_bt = gi-t - _bi_2 for 0 < c < 1 (34)

In fact, this equation is valid for 0 < c < 2. This is an important point (usually ignored

in CFD literature) because, as described below, it suggests a natural and computationally

efficient way of extending explicit advection schemes to arbitrarily large Courant numbers.

Using the corresponding _,, the update equation for second-order upwinding becomes

i = - - _'i-1 4'i-2
(35)

and the complex amplitude ratio is

G2u(C) = 1-c(_-_)+c (2-c)cos0-c (_-_-_) cos 20

,  in0 (36)

This has a Taylor expansion given by the following
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C2 02+ O(04) - t [C0--(.3C262c)03+ 0(05)]G2v(c ) = 1 --_-
(37)

Note in particular that, for c = 1,

G2u(1) = cos0 - t sin0 = G_.._t(1) (38)

corresponding to exact cell-to-cell transfer across one mesh-width.

that for c = 2,

G2o(2) = cos20 - _ sin20 = Go,.,ct(2)

with exact cell-to-cell transfer across two mesh-widths.

stable throughout the entire range

But, in addition, note

(39)

In fact, second-order upwinding is

IG2oI <--1 for 0 <_ c <_ 2 (40)

Two typical polar plots (for c = 0.75 and 1.75) are shown in Figures 8 and 9, respectively.

In order to prove (40), it is convenient to rewrite G2v(c) in the following form,

starting with Equation (36),

G2v (c) = (cos0 -,sin 0) [1 - (c-1)2 (l_cos 0) -,(c-X) sin0] (41)

Note, by comparing Equation (31), that this is of the form

G2u(c ) = exp(-t0) Gl.w(AC) (42)

where Ac = c - 1.

based on Ac,

Of course, l exp( - _0) I -= 1, and for the "Lax-Wendroff" component

IGLw(ZXc)l _< 1 for -1 < Ac < 1 (43)

thus proving (40). It should be stressed that second-order upwinding is one well-known

explicit advection scheme for which the CFL condition does not apply.

In order to gain some insight into the operation of second-order upwinding for a

Courant number range of 1 < c < 2, Figure 10 shows the situation for c = 1.25. In this

case, it is not hard to show, using Equation (15), that

= ac _ (4_i-l ÷ 4_i-2) - -- (4_i-1 - 4_i-2) ÷ 4_i-t (44)

with a similar formula for c4_, (with all indexes increased by 1). The term in square

brackets is clearly the I._-Wendroff face-value based on AC --but for cell (i-1) rather than

cell i. This means that the update equation takes the form
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(45)

with Ac = c - 1. This is algebraically identical to Equation (35). But, by comparison with

Equation (28), it can be seen that the right-hand side is the Lax-Wendroff update of cell

(i-1) using Ac rather than c itself. This gives a hint as to how flux-based conservative

finite-volume explicit advection schemes might be extended to arbitrarily large At. The
details will be examined in the next section.

As is wen known, the conventional Lax-Wendroff scheme suffers from severe phase-

lag dispersion [Fletcher, 1990]. On the other hand, second-order upwinding introduces

phase-lead dispersion for 0 < c < 1. Fromm's method [1968] of "zero-average-phase-

error" aRempts to minimize the dispersion by taking the arithmetic-mean of the respective

sub-grid reconstructions, giving, from Equations (26) and (33)

+ (gT-gL/(_-x,_,)for(x,_,_ (x,_,T)4_"(_) = -"_i-_ _ 2_ '/ --T ") < _ < + Ax (46)

i.e., the slope across any cell is parallel to the chord joining g-values through the centers

of the two adjoining cells on either side. This is shown in Figure 11. To compute the face-
value, first rewrite Equation (34) for second-order upwinding as

1(_7 (_7_ _ _ _÷ _,__)_,L)- c
4_t (2U) = _

(47)

which is seen to be the Lax-Wendroff value together with a correction term proportional to

the upwind-biased second-difference. Then the left face-value for Fromm's method is seen

to be, for Courant number less than (or equal to) one,

_ 1 [_kt(LW) + _bt(2U)]
_bt(Fromm ) -

*_,"-0 c -,,-0 - ( ) (_7-2_7-x_,"__)= _
and the corresponding update equation becomes

(48)

mg 1

_,g"÷a = ok,-"- --2c(_k,., - g,"_,) + Tc2 (g,".l -297 + _b,_l)-"

c (2_) - 3g7+397_1-"+ (gT., -*,-2) (49)

with a complex amplitude ratio

GFr(c ) = GLw(C) + C(_-£)[exp(,0) - 3 + 3exp(-,0) - exp(-,20)]
(50)

Or
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GF,(c)

This has a Taylor expansion

1 - c2(1- cos 0) - c(_-_) (1 - cos 0) 5

-, [c sin0 + c(_--_)sin0 (1 - cos0)]

(51)

c,0,+o<0,)-,[_0-13c_c)o,.o(o')l (52)Gp,(c) = 1 - T --

Although this is only formally second-order accurate, the 03 coefficient is a fairly good

approximation of the exact coefficient, c3/6, over the operating range, 0 < c _< 1. From

its formulation as the average of Lax-Wendroff and second-order upwinding, Fromm's

method clearly needs to satisfy the CFL condition for stability.

Higher-Order Methods

_.(_) =

Ax

for (x,l-T)-<
then gives

In order to construct a higher-order approximation for estimating a face-value, say 4,t, one

might try to interpolate a parabola across cell (i-1) passing through the three values,
n

4_i-2, _" and ,h_ (for u > 0), with the location of these values considered to be at the
"ri- 1 , "v" i

center of their respective cells. Such a parabola is shown by a dashed line in Figure 12.

But, of course, this does not generally satisfy the integral condition given by Equation (17).

Because of its curvature, the parabola needs to be shifted vertically to satisfy this constraint.

Thus, by introducing an additional constant, _b"(_) can be written, in the upstream vicinity

of the left face, as

- +t-" -" I (_:-2__:-,:_,-21-" -" (__x,.)_ (53_" ._'-_'-_. (_-x,_,)÷
Cl + _i-t _ 2_c I . 2Ax.2 I

Ax SubstitutionintoEquation (17),rewrittenfor cell(i-I),
-< (_,_, + T).

(54)
24

The corresponding parabolic segment across cell (i-1) is shown by a heavy curve in Figure

12. Then Equation (15) gives the corresponding left-face value, for Courant number less

than (or equal to) one, as

(55)

with a similar formula for 4,, (i --, i+ 1, as usual). The corresponding update equation is
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__ -n) (,n, _ 6/.1-6.1 +T .1

-n* c _ @,.1 - 3 @_ + 3 6,_, - 6,-2 (56)

This has the same form as the third-order upwind QUICKEST scheme [Leonard 1979], but

in terms of cell-average values, g, rather than nodal values. But note from Equations (53)

and (54) that a nodal value can be retrieved from the sub-grid behaviour. For cell (i-1), for

example, the nodal value is

n

2_7_1 (57)
24

This means that the QUICKEST scheme can be constructed from Equation (56) by writing

(.q_m r' "'-l ) for all i
.h.q _ _..1 -2 + (58)
--i - -i - 24

giving

- " - 2 6," + 6/-1., = 6/ _ .1- ÷T .1

" - 3 @_'+ 3 6/"-1 - 6i-2+ c i.1 (59)

for 0 < c < 1, thus matching the original QUICKEST algorithm, for pure convection.

From the similarity with Fromm's method, the complex amplitude ratio can be

immediately written down as

GQ(c) = l - c' (1-cos0)-c(13c------_2) (1-cos O)2

-, [c sin0 + c(_-_)sin0 (1-cos0)] (60)

and, in this case, the Taylor expansion matches CTeract, Equation (25), through third-order

terms

c2 02 + 0(0') - , [cO - c3 03 + 0(05)] (61)
GQ(c) = 1 - -_- -_-

verifying the expected third-order accuracy.

Higher-order methods can be constructed in a similar fashion. If a Pth-order piece-

wise polynomial (or spline, for that matter) is used for the sub-grid reconstruction, satisfying

Equation (17), the resulting advection scheme will be (P+ 1)th-order accurate. This pattern

has already been seen for first- through third-order methods.
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LARGE TIME-STEP EXTENSION

Most conventional explicit advection schemes are constructed on the assumption that the

Courant number will be in the range 0 < c _ 1 in computing time-averaged face-values;

note the conditional statements just before Equations (19), (26), (48), and (55). It is not

surprising, then, that such methods need to satisfy the CFL condition (Ic] < 1) for stability

--the notable exception being second-order upwinding, which, somewhat fortuitously, is

stable for 0 < c _ 2. Referring again to Figure 10, it can be seen that second-order

upwinding, for c > 1, is equivalent to a "Lax-Wendroff type" of sub-grid reconstruction

over each cell (compare cell i-2 in Figures 4 and t0); i.e., for each cell i,

(62)

for u > 0. Then, since the integration in Equation (15) is over more than one cell, the

average left face, for example, can be written

c4,,(i) = __, + Ac4,_w(i-l, Ac) (63)

where the notation implies that 4,_w(i-1, Ac) is the left-face value of cell (i-1) that would
have been obtained for a Lax-Wendroff scheme with a Courant number of Ac (= c - 1, in

this case).

Clearly, this idea could be extended to even larger Courant number. For example,

Figure 13 shows a situation for c = 2.625. In this case, it should be clear that

c4,t(i) = _-_ + _-2 + Ac 4,_w(i-2, Ac) (64)

where Ac = c - 2. Of course, the right-face value is given by Equation (16), or

LW •
c4,r(i) = _7 + _7-, + Ac 4,, 0-1, AC) (65)

The update equation then becomes

_7 +' = _7 [4,7 + _7_, + Ac 4,}w(i-1, Ac)] -" + +- - + [4',_1 g7_2 ac4,Lw(i_2,ac)] (66)

resulting in an effective update of the form

g"÷' = 47-2 - AC [4,tw(i-1 AC) - Lw., , 4,, 0-2, Ac)] (67)

or, more specifically, using the sub-grid (i.e., "Lax-Wendroff-type") reconstruction of

Equation (62),

ac -. -, g7-2 -" _g."_,) + _297_ 2 (68). <"_,)-- - -- (4,'-' 2

It is not hard to see that this idea generalizes to (in principle) arbitrarily large Courant

number, in which case
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N

ccbt(i ) _ _7_p Lw. (69)= + Ac 4,, 0-N, _c)
p-I

with a corresponding formula for ccbr(i), according to Equation (16). The effective

("extended Lax-Wendroff") update equation is then

= -'_ ¢i-N-,) (70)g"" _,7-,,- -" - _,,%_,)+ _c' (_,:,,.,- +(_,-..1 2_7_.-"
-i "-_

Of course, the same principle could be applied to any sub-grid reconstruction. Then,

one simply writes for the left face, say,

N

c6t(i) = _ _PT-p + Ac6t(i-N, Ac) (71)
p-I

where _bt(i-N, Ac) is computed at the le_face of cell (i-N) based on a Courant number of

Ac. The update equation is then

.-, -. (72)i = 4_i - [cdPt(i+l) - ccbt(i)]

as usual. And this is equivalent to

_.-, - (73)i = dpi_N - AC [dpt(i-N+l, AC) - dPt(i-N, Ac)]

Stability Analysis

Consider a yon Neumann stability analysis of the extended Lax-Wendroff update equation,

Equation (70). The complex amplitude ratio is

GELW = exp(-,N0) - Ac {exp[-,(N-1)O] - exp[-,(N+l)O]}2

+ Ac2 {exp[-,(N-1)0]- 2exp(-,NO)+ exp[-t(N+l)O]}
2 (74)

which can be rewritten as

G ELW exp(- LN0) {1 - Ac [exp(, 0)T

AC 2
+ _ [exp(,0)

2

or, by comparison with Equation (30),

exp(-,0)]

- 2 + exp(-t0)]}

GEL w = exp(-tN0) Gt.w(AC)

(75)

(76)
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where Ac = c-N. Since Ac < 1, by definition, the extended Lax-Wendroff scheme is

clearly stable.

The formula can be generalized to any scheme (i.e., any sub-grid reconstruction) for

which the face-value is a linear combination of cell-average values.

large time-step (LTS) G can always be factored into the form

GLT s ---- exp(-,N0) GSTs(AC)

And if I GsTs(AC)[ < 1, for Ac < 1, the LTS scheme is stable.

accuracy of GLTS is the same as that of GsTs(AC).

For such schemes, the

(77)

The formal order of

LARGE TIME-STEP EXPLICIT TVD SCHEMES

Total-variation-diminishing (TVD) schemes, as described by Sweby [1984], for example,

involve face-values that are, in general, nonlinear functions of (local) cell-average values.

The TVD constraint boundaries described by Sweby have a simple interpretation in terms

of sub-grid reconstruction. The explicit large-time-step extension is then quite straight-

forward, although the von Neumann stability analysis is somewhat more involved (even for

the case of c < 1).

First, for definiteness, consider the case of c < 1. The left-face value is based on

a linear reconstruction across cell (i-1) satisfying Equation (17), but with a slope determined

by certain "limiter" constraints. It is convenient to define

= (78)

This is shown in Figure 14. The TVD value of St° is usually written as

--n

1 (_; +,i_1)] (79) °CrvD)= - -
interpreted as first-order upwinding, corrected by a term proportional to the difference

between first-order upwinding and second-order central (i.e., linear) interpolation between
-,,

_i__1 and $i ' as shown in the figure. The factor _, is the antidiffusion flux-limiter factor,
and is a nonlinear function of the local gradient ratio

it2)
r- (_i_-1- (80)

Equation (79) can be rewritten as

_,_,)_ (1-_,) (_7 -"
6°(TVD) = 2" 2 -'#i-,) (81)

The time-averaged face-value (for c < 1) is then, from Equation (15),
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¢,(TVD) = (1-c)4> ° + c_7_1 (82)

giving

1 (1-_)(1-c) (_7--"- - 4_,-1) (83)
4_tfrVD) = 4>_w 2

where the coefficient of the latter term can be viewed as being proportional to an effective

artificial diffusivity (or viscosity)

1 (1 - _) (1 - c) u _c (84)
Dr t =

relative to the Lax-Wendroff face-value.

Sweby gives the TVD constraints on ¢ as

= 0 for r<0
(85)

0 < __< 2r for 0 < r < 1
(86)

and

0___ _ ___ 2 for r > 2
(87)

This is shown in Figure 15. Figure 16 shows three typical examples for r = - 1/2, + 1/3,

and 3. For a local maximum (or minimum), case (a),

_bt = _b° = _7-1, r < 0 (88)

In the other cases, the sub-grid reconstruction across cell (i - 1) is a linear function passing
_n

through 6i-_ at x i
n

6"(_) = _,-1 + S(_ -x,q) (89)

where the slope, S, is constrained to satisfy

0 _< Isl -< Isoo.I (90)

For a gradient increasing (in magnitude) with i (i.e., 0 < r < 1), case (b), the constrained

slope is

-" -_,-_) (91)

Ax/2

corresponding to ,p = 2r, or Ct° = 2 6__1 - _7-2 And for r > 1, case (c),

Scon

-"_ -_i-,) (92)

zkx/2
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corresponding to ¢ = 2, or _t° = 5_. The limiting slope, S_., is thus seen to be the

smaller (in magnitude) of twice the backward or forward gradient; the larger value is shown

by the chain-dashed line in each case in Figure 16.

Although explicit TVD schemes have been used only for time-steps satisfying the CFL

condition, there is clearly no need for this constraint. Figure 17 shows a reconstruction that

uses So** across each cell, with a Courant number of c = 2.25. In this case,

where

__ -nc _bt(i) = t + _b_-2 + Ac _t(i-2) (93)

Ac _t(i-2)

or, in this case (since r > 1),

Ac ¢,t(i-2) =

And the fight-face value is given by

c  r(i)

or (since, here, r < 1)

c ¢,(i) =

-" Ax/2] (94)= ac[¢,_ 3 + (1-ac) So..

mn _n

Ac_b,_ 3 + Ac(1 -Ac)(qb,_2 - _b,__3) (95)

= c¢,,(i+1) = _ + _,,_, + AcC,(i-1) (96)

57 + 51'__ + Ac ;;'-2 + Ac (1 - AC) (;,"-2 - 5,"_,)

The update equation is then, effectively,

(98)

The complex amplitude ratio

(99)

which is stable, the term in square brackets being Gtv(Ac).

In general, for c = N + Ac, the complex amplitude ratio will vary from cell to cell,

depending on the particular form of sub-grid reconstruction near cell (i-N), but, in any

case,

G i = exp(-_N0) Gi_u(Ac ) (100)

using an obvious notation. Since, for TVD schemes, IG.N(Ac) I < 1 for Ac < 1, the large
time-step extension is always stable.

for the case shown.

D n= ;7-2- Ac(4,_2- ;7-3)
in this case, equivalent to (extended) first-order upwinding.

(for cell i) is

Gi

(97)

= exp(-120) { 1 -0.2511 -exp(-_0)]}
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CONCLUSION

Most conventional explicit advection schemes need to satisfy the CFL condition (c _ 1)

because of a restriction on the range of validity of the sub-grid reconstruction formula

upstream of individual finite-volume faces. If the given formula for the sub-grid

reconstruction (valid for c _ 1) is extended beyond c = 1, the scheme is unstable in the von

Neumann sense (except for second-order upwinding, which is stable for 0 < c _ 2). For

example, Figure 18 shows an extension of the conventional Lax-Wendroff sub-grid

reconstruction upstream of the left face of cell i, for c = 1.75,

(101)

Clearly, the real problem is that, across cell (i -2), _n(_) does not satisfy the consistency

relationship of Equation (17); i.e.,

xj. a+ Ax/2

6n( )d (lO2)

In the case shown, the influx through the left face of cell i will be too small (and the outflux
m

through the right, far too large) resulting in a wild oscillation of ¢i that rapidly grows
without limit.

Second-order upwind sub-grid reconstruction upstream of the left face of cell i,

(somewhat fortuitously) satisfies Equation (17) for both cell (i - 1) and (i -2). This is the

fundamental reason for the stability range extending to c = 2. Once this is recognized, it is

not hard to see how to generalize to arbitrarily large Courant number. One simply performs

a sub-grid reconstruction satisfying Equation (17), then computes all face-values according

to Equation (15), or, equivalently,

N

c -n= ¢ki_e + Ac _t(i-N, Ac) (103)
pffil

finally updating via

_.i = _ _ c[ept(i+l)-_,(i)] (104)

The result is equivalent to

_.1 = ___ _ Ac[dpt(i_N+l,Ac) _ ept(i_N, Ac)] (105)

representing an update of cell-average _i-s for a Courant number of Ac, together with a

simple translation over N mesh-widths. It should be clear that any numerical distortion of

the evolved profile depends on the particular form of sub-grid reconstruction, the total

number of time-steps, and Ac--but not on c itself.

A piece-wise constant assumption across each cell results in a very diffusive first-order

scheme. A Lax-Wendroff-type sub-grid reconstruction, as given by Equation (26) for each

cell, gives rise to trailing oscillations, just as in the conventional (c < 1) case. Conversely,
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the large time-step (LTS) extension of second-order upwinding, given by Equation (33) for

each cell, results in leading oscillations. The extended version of Fromm's method,

Equation (46), and particularly QUICKEST, Equation (53), are much less oscillatory.

Finally, for large-At explicit TVD schemes, the evolved shape is nonoscillatory, identical

to that for a Courant number of Ac (< 1) for the same number of time-steps, but translated

N mesh-widths downstream.

Note that some sub-grid interpolations are independent of the direction of the

convecting velocity. This is the case, for example, with (the large-At extension of) first-

order upwinding, From m's method, and QUICKEST's piecewise-parabolic interpolation; the

reconstruction is the same, no matter whether c is positive or negative. In these cases, there

is a sort of built-in "natural upwind bias" because of the way the fluxes are calculated. A

second-order upwind type reconstruction based on (for c > 0)

_n _n

(4,-_b,.,} (106)= + , - x,)

across each celli,has an additionalupwind bias. For c < O, the corresponding formula

would be

By contrast, the Lax-Wendroff type reconstruction uses Equation (107) for c > 0 and

Equation (106) for c < 0; this is a form of downwind bias. Generally, the direction-

insensitive schemes have better phase accuracy than the "directional" schemes.

A yon Neumann stability analysis of the large-time-step explicit scheme always results

in a complex amplitude ratio of the form

GLr s = exp(-LN0) Gsrs(AC) (108)

which should be compared with the exact expression, rewritten here for convenience

G_,c t = exp(-tN0) exp(-tAcO) (109)

Generalization of the one-dimensional LTS schemes to variable mesh-widths and

(some specific forms of) varying velocity fields appears to be relatively straight-forward.

Such schemes have recently been explored by Roache [1992]. Extension to two (and three)

dimensions is much more challenging; but some progress has been made. This will be

reported in future publications.
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Figure 1 ._Space-time grid showing advective cha, acterisitics into the left face of finite-volume
cell i.
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Figure 2._Piece-wise constant sub-grid behavior. The hatched region represents influx into the

left face of cell i, for c = 0.75.



2O
Im (G 1U)

-1 0=_ 0=0
Re (G 1u)

Figure 3.---Polar plot of GIU for c = 0.75. This is a semi-circle in the lower half of the

G-plane. Data points are connected to exact G values at corresponding 0 values,
for 5 ° increments in 0.
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Figure 4.---Conventional Lax-Wendroff sub-grid reconstruction. The hatched region represents

left-face influx for cell i, for c = 0.75.
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Figure5.---ConventionalLax-Wendroffsub-gridreconstructionfor negativeCourantnumber,
¢ = -0.75.
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Figure 6._Polar plot of GLW for c = 0.75. This is a semi-ellipse in the lower haJf of

the G-plane. Exact values also shown, with 5 ° increments in 0.



22

,4L
V

i-2

= Ii

i__1 ' xt

u_t -_

,4L ,4L
"qF

i x r i+1

Figure 7.--Conventional second-order sub-grid reconstruction for positive c (= -0.75).
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Figure 8.---Polar plot of G2U for c = 0.75. Exact values also shown, with 5° incre-

ments in 0.
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Figure 9.--Polar plot of G2U for c = 1.75. Exact values also shown, with 5° incre-

ments in 0.

23

I
' : l1
' I
1 A - ' " A _

i 2 1 I _ - 1 x t i xr i + 1

u_t _J

Figure 10.---Conventional second-order upwinding, c = 1.25. Face influxes require integration over
more than one cell. Because of the double-valued interpolation, the small vertical ticks indicate

which faces belong to which interpolant.
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Figure 11 .--Sub-grid reconstruction for Fromm's method. The slope of the interpolant across

any cell is parallel to the chord joining adjacent cell-averages. In this case, c = 0.75.
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Figure 12.--Piece-wise parabolic interpolation across cells, resulting in a third-order upwind

scheme equivalent to QUICKEST; c = 0.75.
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Figure 17.--Large-time-step explicit TVD scheme, c = 2.25.
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